Key Performance Indicators for Rowing

Andrew J Murphy, PhD
Anthony MJ Bull
Alison H McGregor
Imperial College London
Department of Bioengineering
Division of Surgery

Setting the scene

- Biomechanics
- Kinematics
- External forces

Structure

- History – rowing, research, and Imperial
- My work – rationale, systems, scope
- Results
- Discussion and implications

Rowing, research, and Imperial

- Early imaging studies
 - Spinal motion
 - Lumbar
 - Pelvic
 - Lab based motion analysis
 - Two-dimensional
 - Stroke profile

Rationale for my work

- Development of existing system
- 3D movement
- Description
 - Intensity
 - Training
- Performance
- Injury?
Measurement system

- Real time biofeedback
- Flock of Birds motion capture
- Handle force and motion
- Seat force and COP

Experimental method

- Stretch
- Warm up
- Attach markers

- Ergometer rowing
 - Incremental 6 stage Step test
 - Individualised using 2k PB

Measurements

- Trajectory and rotation of:
 - LSJ, HJC, KJC, AJC, FJC

- Sagittal plane
 - LSJ flexion
 - Pelvis
 - Lumbar spine
 - Pelvis

- Stroke profile
 - Handle force
 - Handle motion
 - Seat force
 - Seat COP
 - Suspension
 - Length, Work, Power

Measurements

- Trajectory and rotation of:
 - LSJ, HJC, KJC, AJC, FJC

- Stroke profile
 - Handle force
 - Handle motion
 - Seat force
 - Seat COP
 - Suspension
 - Length, Work, Power

Additional testing

- Muscle function
- Cybex
- Trunk
 - Extensors
 - Flexors
 - Strength
 - Power

Three-dimensional (3D) kinematic reconstruction and modelling
Scope

- Members of GB Rowing squad
- Many months
- Comprehensive database of biomechanical data

Results

Data analysis

- Descriptive
- Intensity
- Longitudinal
- Performance
- Injury

External forces

Force (N)

COP (mm)
FISA World Rowing Coaches Conference

20-23 January 2011

3D kinematics

Joint rotations (°)

Joint trajectories (mm)

LSJ rotation (°) & Pelvic tilt

Descriptive

- Some differences noted between athlete groups
- Variability of motion
- High correlation
 - Max, Min – Catch, Finish

- Does the pelvis and back influence the limbs, or is it the opposite?
Discussion and implications

Exercise intensity - Summary
- Stroke profile
 - As expected
- Kinematics
 - Race pace sig different from lower intensity
 - Possibly less controlled
 - Less postural control
 - Less time to perform same action
 - 18 strokes/min ≈ 3.3 s 32 strokes/min ≈ 1.9 s

Longitudinal – Summary
- Stroke profile
 - As expected
- Stronger, more upright posture
- Lower LSJ alpha at catch and mid drive
- Coaching, training and assessment are effective in managing stroke profile and kinematic technique

Performance

Performance - Measurement
- Predicting performance
 - Timing of the stroke
 - Rate of force production
 - Stroke length
 - Power output
 - Seat force & COP

Performance - Kinematics
- Majority of kinematic variables influenced at least one performance measure
- Recommendations based on association with multiple performance measures

Andrew J Murphy
andrew.j.murphy@strath.ac.uk
Performance - Kinematics
- Flex/Ext or displacement in sagittal plane is more important than medial lateral
 - All general recommendations associated with multiple performance measures

Performance - Power - Kinematics
- Majority of kinematic variables influential to power output described motion of the legs
 - Majority of power output should come from the legs
 - Low back & pelvis main role is transmitting power
 - Driving legs down quickly
 - Heels up at catch and down at finish

Cybex – Trunk muscles – LSJ delta
- Literature suggests 130-160% bias in favour of extensors
- Correlation analysis
 - Stroke events have different optimal muscle bias
 - General recommendation is in line with literature

Performance - Stroke Profile
- Rate force production ↑
- Suspension
 - Maximise during initial drive
 - Reduce during late drive
- COP deviation left/right ↓

What does this mean?
- Action of the legs
- Postural control
- Rate and magnitude of force production
- Importance of suspension

Training implications – Kinematics
- LSJ alignment
- LSJ delta during drive
- Heel timing
 - Catch
 - Mid-drive
 - Finish
Training implications – Kinematics

- Biomechanical measurement
 - High level analysis for discrete joint behaviour
 - Video playback to observe gross segment motion
 - Visual inspection of relative rate of motion of:
 - Blade/handle vs knees
 - Shoulders vs hips
 - ...
 - Boat setup/rigging, insoles, orthotics

Training implications – Muscle

- Awareness of muscle group activation and sequencing
- Flexibility
- Role of specific muscle groups

Training implications – Stroke profile

- Suspension may be a surrogate for measuring good energy transfer from the primary movers
- With COP deviations to observe stability, control, smoothness, efficiency of force delivery
- Stroke events
 - Catch
 - Peak force
 - Finish
 - Better at Catch = better at Finish
 - For measurement, recall:
 - Max, Min
 - Catch, Finish

Predicting performance

- As with consideration of kinematics feedback
 - Sport in general
 - Specific and Individual
 - Athlete
 - Performance parameter

Spinal injury

- Influence on performance
 - Lost training days
 - Crew disruption
- Dependent variable
 - Informed by the literature
 - Change in LSJ alpha
 - Rate of change LSJ alpha
 - Magnitude of loading
- Statistics
 - Principal component analysis
 - Correlation analyses
 - Multivariate regression

Spinal injury

- Did not test injured athletes
 - Discursive
- Potentially injurious LSJ kinematics are associated with lower limb motion
- Catch highly associated with finish
 - Safer at one – safer at other
 - Catch is more important than finish
 - Kyphosis leads to rapid lumbar extension during the drive
 - Greater risk at higher intensity
 - Greater risk with high rates of external force production
 - Greater risk with increased late drive suspension
Summary
- Explicit description is possible and useful
- Intensity is influential
- Kinematics can be trained
- Motion does influence performance
- Technique is probably closely linked with injury risk
- Motion of lower limbs, pelvis and lower back are intimately connected
- Suspension
- Feedback must be accurate precise and individualised

Key performance indicators for rowing

<table>
<thead>
<tr>
<th>Traditional</th>
<th>(re)Fresh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>Timing and sequencing of body segments motion</td>
</tr>
<tr>
<td>Peak forces</td>
<td>Postural control</td>
</tr>
<tr>
<td>Length</td>
<td>Suspension</td>
</tr>
<tr>
<td>Split</td>
<td>Efficiency and smoothness of motion in optimal directions</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Thank you for your attention

andrew.j.murphy@strath.ac.uk

- Explicit description is possible and useful
- Motion does influence performance
- Lower limbs, pelvis and lower back connected
- Kinematics can be trained
- Intensity is influential
- Suspension
- Quality of feedback

Anthony Bull • Alison McGregor • Samson Choe

Paul Thompson • Robin Williams • Max Forbes Thomas • Darren Whiter • John Keogh • David Tanner
Roisin Maygbverting • Nikolai Boshike • Scott Drawer

Andrew J Murphy
andrew.j.murphy@strath.ac.uk