20-23 January, 2011
Finding the "Edge" - Talent and Technology

How can Science and Technology help rowing coaches to develop performance?
10.30-11.30 Ergometer Training Kurt Jensen DEN
11.30-12.45 Questions and discussion

The "one week test" has been proposed to define the right balance?

$$
\begin{aligned}
& E \\
& \frac{E}{4} \\
& 8 \\
& 8 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{array}{lll}
& & \text { US ref } \\
550 & 1,76 & \text { ten strokes } \\
450 & 1,44 & 1 \mathrm{~min} \\
313 & & 2 \mathrm{k} 6: 55 \\
263 & 0,84 & 6 \mathrm{~km} 22: 00 \\
219 & 0,70 & ?
\end{array}
$$

$$
0
$$

Bruce G. Grainger, 2008, MSc dissertation

At training venues, boathouses and gyms all over the world right now, athletes are dutifully logging kilometers at low stroke ratings of $18-24$ spm. While there are benefits to this practice, Concept2 has some concern over the impact of low stroke rate/high force work done during long training sessions. Coaches and athletes need to understand the effect of stroke rate on the average force required to achieve a desired power output or pace. At low stroke rate the average force will be significantly higher for a given pace. Account for this reality by targeting a slower pace during low stroke rate work. High volume, low stroke rate work at high power output has the potential for causing overuse injury

Chris Wilson, 2008

Drag	Pace	SPM	Average Force in 168 f kgs .) during drive	Average Force in lbs, (kgs) during drive -arg on a slide
120	2:00	18	127 (58)	127 (58)
120	2:00	24	105 (48)	97 (44)
120	2.00	30	84 (38)	83 (38)
120	2:00	34	83 (38)	78 (35)
120	1.45	18	174-79\%	1728:809
120	1.45	24	$143165)^{\text {a }}$	1421651
120	1745	30	11.5952\%	131 (50)
120	10.45	34	1901509	108 (491

Regulation of resistance

- The elastic band
- The Drag factor

Figure 2 - Regression plot showing the linear relationship between stroke frequency and power at three different stroke lengths at zer

Values are means $\pm S D, \mathrm{n}=3$.	Long stroke:	$\mathrm{r}^{2}=0.996$	$\mathrm{y}=0.98 \mathrm{x}-5.42$
	Middle stroke:	$\mathrm{r}^{2}=0.997$	$\mathrm{y}=0.84 \mathrm{x}-3.99$
	Short stroke:	$\mathrm{r}^{2}=0.996$	$\mathrm{y}=0.69 \mathrm{x}-2.22$

Regulation of resistance

- The elastic band
- The Drag factor
- Personal communication:
- "I am typically about 110 in drag factor. The ideal is probably higher, but relative to the water is fairly realistic
- The shorter the distance the higher the drag factor
- I perform significantly better at maximum drag when going for 100 m all-out.
- At 1 min all-out I will typically choose between the two extremes"

Drag test

Ergometer Rowing With and Without Slides
A. Holsgaard-Larsen, K. Jensen

Training \& Testing
Int J Sports Med 2010; 31(12): 870-874

Table 1 - Descriptive characteristics of the subjects

Age (years)	Elite training (years)	Weight (kg)	Height (cm)	$\mathrm{VO}_{2} \max$ $\left(\mathrm{~L} \mathrm{~min}^{-1}\right)$
24 ± 3	6 ± 2	71.3 ± 12.3	177 ± 8	4.2 ± 0.5

Protocol

- 3 sub-maximal 6 -min tests at $40 \%, 55 \%$, and 70% of their seasons best 6 -min all-out mean power performed on a stationary ergometer and 6min all-out test to simulate a 2000 meter on-water race
- Stroke rate and drag factor (adjustable resistance) of the ergometer were adjusted by the rowers to be the same during slide and stationary ergometer rowing according to their previous experience

Physiological aspects

$\Delta \mathrm{VO}_{2}$ kinetic

- Slide
$Y=3.006\left(1-\exp \left(-0.041^{*} X\right)\right)$
$r^{2}=0.987 \quad$ Half life $=16.81$
- Stationary
$\mathrm{Y}=2.991\left(1-\exp \left(-0.044{ }^{*} \mathrm{X}\right)\right)$
$r^{2}=0.986 \quad$ Half life $=15.82$

Box-plots of a) stroke frequency (SF), b) stroke length, c) time of drive phase, and d) time of recovery phase for slide (open) and stationary (closed) ergometer at 40\%, $55 \%, 70 \%$ and at all-out. Data are averaged from all rowing strokes between 180-300s of the test.

"No ergometer has yet been made that can closely emulate the sensitive response of a racing shell to the movements of the crew in the boat (acceleration of the mass of the crew, pitching, yawing). What we need is a rowing flume, similar to a swimming flume" Bruce G. Grainger, 2011

Training

Intense Interval Training

Types of anaerobic training

Type of anaerobic training

Speed endurance production Speed endurance maintenance

Exercise intensity (\% of maximum speed) 100 70-100 50-100

Duration of exercise (s)

10-40
5-90

Duration of recovery
50-100 s
>5 times exercise duration

1-3 times exercise duration \quad| $3-12$ |
| :--- |
| -25 |

The race

- Ten of Denmark's best rowers smashed the World Record for a team going 24 hours non-stop on the indoor rowing machine over the 24-25 November.
- They set the new World Record by completing a massive 512,649 metres at Copenhagen's central train station watched over by commuters.
- The Danish team's tactics was to switch rowers every 15 seconds and to row as hard as possible in those 15 seconds. After two hours of rowing, two athletes had a 15 minute break. This made it 45 minutes rowing followed by a 15 minutes break for each rower in the space of an hour.
- "Our tactic was to go hard out and the first 12 hours our pace was 1:21.9/500 metres, so we survived on this big lead over the last 4 to 5 hours where we all really suffered a lot to keep ourselves going"
- 24 hours: $1^{*} 15 \mathrm{sec}$ on/9*15 sec off ...
- Average Power 585 ~ 1:24 ~ 2000m 5:37 (Rob Waddell, WR)
- 256 *2000 meters at WR Pace

Description of Intensity

1/A2/A3 high to very high intenity
B/C medium to race pace intensity

D/E
low to very low intensity

-	Pace	\%2km	Time	Reps	rec	BL	HR\%	Physio. Eff.
A1	Start	>180	5-10s	5-10	50-100s			An Power
A2	first 300 m	>140	10-40s	3-12	>5 EXD			An Capacity
- A3	last 300m	>100	10-90s	3-12	>3 EXD			An Tolerance
B	$1-3 \mathrm{~km}$	95	3-9 min	2-8	5-10min	>10	95-100	Ae Power
C	6-8km	80	10-20 min		5-10min	3-5	90	Ae Capacity
D	12-20km	70	1-2 hours			2-3	80	Ae Endurance
- E	Rec	50-60	1-2 hours			1-2	70	Ae Recovery

Seiler \& Kjerland 2006

Do we need base training?

Fur I Appl Paysiol (2004) 92: 121-127
DOI 10.1007 in $0421-004-1042-4$
ORIGINAL ARTICLE

Johnuy E, Nilson Hans-Christer Hulmberg
Per Tveit - Jostein Hallín
Effects of $\mathbf{2 0}$-s and $\mathbf{1 8 0}$-s double poling interval training in cross-country skiers

Fig. 3 Mean reletive dumation (SD) of thaining time TV70 180-s inierval training $/ T 2,204$ sprimt interval traning. and cON control group. $\mathrm{W} / \mathrm{High}$ intenaity truining $>75 \%$ maximum oxypen uptake; L. low insensity training $<75 \%$ maximum oxypen veptake: $\$$ strength lraining DPET doukle poling ergomeler training

- This study showed that 6 weeks of 20 -s or 180 -s double poling interval training, three times a week, significantly increased power output in both 30-s and 6-min tests, as well as in selected physiological and biomechanical parameters.
- The significant improvement in the 6-min test, in both IT20 and IT180, indicates that upper body power training might usefully contribute to improvements in performance in cross-country skiing.
- With reference to the training effects found in our study, we suggest that crosscountry skiers in general, and sprint skiers in particular, may integrate the interval models used in this study in their training program.
- The sprint discipline consists of 4-5 heats of 3-min high intensity work in each heat, where double poling is one of the most dominant techniques.
- However, the specific relevance of double poling ergometer training for crosscountry skiing in the field condition on snow still remains to be investigated

Table 2 Mean (SD) pre- and post-training results. Peak power und meas power in the $30-5$ test and mean power, force and cycle frequency in the 6 -min performance test. Peak and maximum oxyern uptake as well as work efficiency and blood lactate con-
centration during double poling at sub-maximal work intensities. The hody mass did not change significantly within any of the groums between the pre- and post-test

	20-s interval truining (IT3)			$180-8$ interval training (IT180)			Control (CON)		
	$\#=6$			$n=7$			$4=7$		
	Pre-Iraining	Post-training	\% changs	Pre-Inaining	Post-training	\% sbange	Pre-Iraining	Post-training	\% change
Mean power. $30.4 \mathrm{~W} \mathrm{Vr}^{-1}$)	2.94 (0,65)	3.58 (0.44)	$21^{*}(16)$	2.73 (0.55)	3.19 (057)	$17^{*}(5)$	3.32 (0.74)	3.35 (0.82)	1 (6)
Poak power, 	3.49 (0.72)	4.28 1.088$)$	$22^{*}(14)$	3.11 (0.64)	3,65 (0,66)	${ }^{17 *}(7)$	3.81 (0.84)	3.86 (0.85)	I (5)
Meal power, Binin (W ke H^{-1})	191 (0) 40)	$2.07(0.47)$	$8^{*}(8)$	1.86 (0,47)	217 (04)	$16^{*}(10)$	209 (0.43)	2.06 (0.35)	-1 (5)
Average force. 6 min (Nkg^{-1})	1.63 (0.36)	1.72 (0.29)	$7(8)$	1.64 (0.32)	1.82 (0.30)	$15^{*}(11)$	1.75 (0.42)	1.78 (0.38)	2 (15)
Cycle frequency. 6 min ($\mathrm{c} \mathrm{min}^{-1}$)	48.2 (39)	53.6 (2.9)	$12 * 93$	49.4 (3.7)	51.3 (4.4)	4 (6)	48.4 (8.2)	50.3 (7.0)	4i6)
$\begin{aligned} & 1 \mathrm{O}_{\text {mana }} \\ & \left(\mathrm{ml} \mathrm{~kg}^{-1} \mathrm{~min}^{-1}\right) \end{aligned}$	63,8 (99)	$64.5(10.3)$	I(4)	$61.6(7.1)$	62.4 (8.0)	((2)	6, 4.4 (6.2)	629 (55)	-1 (4)
10 $\mathrm{O}_{\text {2ned }} \mathrm{mil}^{-1}$ min	54.2 (10.5t	53.4 (9.6)	$-1(4)$	$53.00(7.3)$	55.217 \%	$4^{*}(3)$	53.7 (8.0.t)	52.4(4.5)	$-2(5)$
Work efliciency? (mil ke ${ }^{-1}$ min ${ }^{-1}$)	$45.6(5.1)$	40.6 (6.4)	-9^{*} (6)	4.0.0 (4.8)	41.0 (4.6)	$-7^{*}(5)$	$40.0(5.5)$	$39.5(6.2)$	$-2(5)$
Brood lactate concentration (mmol T^{-1})	$4.6(18)$	4.1 (1.3)	$-4(8)$	3.8 (1.0)	3.1 (0.8)	$-18^{\circ}(9)$	3,2(1.2)	3.2 (1.3)	6 (24)

* Variable significantly different between pre- and post-teit. $P<0.95$
* At the 100 and 150 W stage for females and males, respectively

Four weeks of speed endurance training reduces energy expenditure during exercise and maintains muscle oxidative capacity despite a reduction in training volume.
laia FM, Hellsten Y, Nielsen JJ, Fernström M, Sahlin K, Bangsbo J.
Dept. of Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark.

Abstract

We studied the effect of an alteration from regular endurance to speed endurance training on muscle oxidative capacity, capillarization, as well as energy expenditure during submaximal exercise and its relationship to mitochondrial uncoupling protein 3 (UCP3) in humans. Seventeen endurance-trained runners were assigned to either a speed endurance training (SET; $n=9$) or a control (Con; $\mathrm{n}=8$) group. For a 4-wk intervention (IT) period, SET replaced the ordinary training (approximately $45 \mathrm{~km} / \mathrm{wk}$) with frequent high-intensity sessions each consisting of 8-12 30-s sprint runs separated by 3 min of rest ($5.7+/-0.1 \mathrm{~km} / \mathrm{wk}$) with additional $9.9+/-0.3 \mathrm{~km} / \mathrm{wk}$ at low running speed, whereas Con continued the endurance training. After the IT period, oxygen uptake was $6.6,7.6,5.7$, and 6.4% lower ($P<0.05$) at running speeds of $11,13,14.5$, and $16 \mathrm{~km} / \mathrm{h}$, respectively, in SET, whereas remained the same in Con. No changes in blood lactate during submaximal running were observed. After the IT period, the protein expression of skeletal muscle UCP3 tended to be higher in SET ($34+/-6$ vs. $47+/-7$ arbitrary units; $P=0.06$). Activity of muscle citrate synthase and 3-hydroxyacyl-CoA dehydrogenase, as well as maximal oxygen uptake and 10km performance time, remained unaltered in both groups. In SET, the capillary-to-fiber ratio was the same before and after the IT period. The present study showed that speed endurance training reduces energy expenditure during submaximal exercise, which is not mediated by lowered mitochondrial UCP3 expression. Furthermore, speed endurance training can maintain muscle oxidative capacity, capillarization, and endurance performance in already trained individuals despite significant reduction in the amount of training

Taper

Eur I Apel Plynid (2015) 111:293-301
DOI 10 - $107180421-010-16649$
original article

Effect of endurance training on performance and muscle reoxygenation rate during repeated-sprint running

Martin Hachheit - Pierre UHand

- the effect of an 8-week endurance training program on repeated-sprint (RS) performance and post-sprints muscle reoxygenation rate in 18 moderately trained males
- These data also confirm the importance of aerobic conditioning in sports, where repeating high-intensity/maximal efforts within a short time-period are required

Training, individualization

To improve rowing performance Find the balance!

- The role of intensity
- To improve rowing performance
- To improve efficiency and technique
- To improve anaerobic energy system
- To improve aerobic transportation system
- The role of duration:
- To improve efficiency and technique
- To improve aerobic endurance performance
- To improve training resistance, adaptation and recovery?

PHYSIOLOGICAL TRAINING

Be specific (and individualize)

ERGOMETER TRAINING

Be specific (and individualize)

Volume 10 No 115 Rowing Biomechanics Newsletter October 2010

Q2010: Dr. Valery Kleshnev; 1 нит biorowicom

A: Rowing on DIR is quite similar to rowing on an erg on slides: the force increases faster at the catch then on a stationary erg (Fig 1), which is caused by a smaller moving mass and lower inertia forces (RBN 2003/10). The magnitude of the handle force is similar on all types of ergs and significantly higher than on-water, due to the presence of a gearing in a boat (RBN 2005/03).

Recommendations

- Coaches should be prepared to individualize training programs in regard to volume and intensity to suit each athlete
- Provide good supervision of technique while athletes train on an ergometer
- Make sure that the longer session is broken up into shorter pieces with appropriate rest and stretching in between the pieces
- Use (in general) lower drag and adapt the drag factor to increase specificity of the work out
- When appropriate, use a sliding ergometer
- Use some forms of cross training in conjunction with ergometer training in order to achieve the necessary training volume
- Try to place ergometer sessions and weights sessions on separate training days, or at least several hours apart

